Neural processing of target distance by echolocating bats: functional roles of the auditory midbrain.

نویسندگان

  • Jeffrey J Wenstrup
  • Christine V Portfors
چکیده

Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these "delay-tuned", "FM-FM" response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Role for the Superior Colliculus in the Control of Sonar Vocal Production in the Echolocating

Title of Dissertation: A ROLE FOR THE SUPERIOR COLLICULUS IN THE CONTROL OF SONAR VOCAL PRODUCTION IN THE ECHOLOCATING BAT, EPTESICUS FUSCUS. Shiva Ranjan Sinha, Ph.D., 2005 Dissertation Directed By: Cynthia F. Moss Department of Psychology Microchiroptera have evolved a biological sonar system that enables aerial foraging in total darkness. These echolocating bat species emit sequences of ultr...

متن کامل

Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain.

A number of central auditory neurons exhibit paradoxical latency shift (PLS), a response characterized by longer response latencies at higher sound levels. PLS neurons are known to play a role in target ranging for echolocating bats that emit frequency-modulated sounds. We recently reported that early inhibition of unit's oscillatory discharges is critical for PLS in the inferior colliculus (IC...

متن کامل

Spatiotemporal contrast enhancement and feature extraction in the bat auditory midbrain and cortex.

Navigating on the wing in complete darkness is a challenging task for echolocating bats. It requires the detailed analysis of spatial and temporal information gained through echolocation. Thus neural encoding of spatiotemporal echo information is a major function in the bat auditory system. In this study we presented echoes in virtual acoustic space and used a reverse-correlation technique to i...

متن کامل

Neural maps for target range in the auditory cortex of echolocating bats.

Computational brain maps as opposed to maps of receptor surfaces strongly reflect functional neuronal design principles. In echolocating bats, computational maps are established that topographically represent the distance of objects. These target range maps are derived from the temporal delay between emitted call and returning echo and constitute a regular representation of time (chronotopy). B...

متن کامل

Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming.

Although it has been recognized that echolocating bats may experience jamming from the signals of conspecifics, research on this problem has focused exclusively on time-frequency adjustments in the emitted signals to minimize interference. Here, we report a surprising new strategy used by bats to avoid interference, namely silence. In a quantitative study of flight and vocal behavior of the big...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience and biobehavioral reviews

دوره 35 10  شماره 

صفحات  -

تاریخ انتشار 2011